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Abstract. The classification of isoparamtric hypersurfaces has been almost completed in

these five years. The discovery of infinitely many non-homogeneous isoparametric hyper-

surfaces in Sn by Ozeki-Takeuchi stimulates Ferus-Karcher-Münzner to obtain a celebrated

result to the effect that one can construct isoparametric hypersurfaces from all the repre-

sentations of Clifford algebras. The polynomials defining these hypersurfaces are expressed

by the moment map of the spin action, which is the main theme of this article.

1 Introduction

Curves filling a plane in a tidy way are parallel lines or parallel circles. The
3-space is filled similarly by parallel planes, parallel spheres or parallel right circular
cylinders. We are concerned with:
Q. Which surface M has self-similar parallel surfaces?

Which surface has parallel surfaces which are all regular?

Here we mean by a parallel surface the surface located in the same distance
from the original one in the normal direction. In general, a singularity occurs when
we reach a focal point. Therefore, “parallel surfaces are all regular” means a focal
subset is also regular.

This problem has its origin in the geometric optics and the analysis of wave
fronts developing by the Huygens principle.

A. To the same problem for hypersurfaces in En, the answer is hyperplanes, hyper-
spheres and the product of these. In the hyperbolic space Hn, they are equidistant
hypersurfaces, horospheres, spheres and the product of these (É. Cartan). However,
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in the sphere Sn, infinitely many different kinds of parallel hypersurfaces with this
property exist.

Q. How do we express M?

A. Level set expression: Expression of M as a level set M = f−1(t) of a global
function f on the ambient space is suitable to express developing wave fronts. In
the research of mean curvature flow, this method is common.

Remark 1.1. Functions expressing M are not unique.

• f(x) = ‖x‖ and g(x) = cos ‖x‖ have the same level sets (round spheres).

Now, let M be a complete Riemannian manifold, ∇ the Levi-Civita connection, and
4 the Laplacian.

Definition 1.2. (1) A C2 function f : M → R is called an isoparametric function

if f satisfies:

(I) ‖∇f‖2 = ϕ(f), ϕ : f(M)→ R : C2

(II) 4f = ψ(f), ψ : f(M)→ R : C0

(2) We call a level set of a regular value of f an isoprametric hypersurface.

Example 1. f(x) = ‖x‖2 has ∇f = 2x and so ‖∇f‖2 = 4f , satisfying ∆f = 2n,

and hence f is an isoparametric function.
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Fact 1. (É. Cartan) Let M be the space forms (En, Sn or Hn), and consider a

family of parallel hypersurfaces {Mt}. Then the following are equivalent:

(i) {Mt} is a family of isoparametric hypersurfaces.

(ii) All Mt has constant mean curvature.

(iii) Certain Mt has constant principal curvatures.

Remark 1.3. A local notion(iii) induces a global notion (i).

Planes, spheres and right cylinders have constant principal curvatures, and so
isoparametric.

Known examples
M Mn−1

En En−1 or Sn−1 Ek × Sn−k−1 –
Hn Heq or Sn−1 Hk

eq × Sn−k−1 –

Sn Sn−1 Sk × Sn−k−1 more

Heq: equidistant hypersurfaces and horosphers

{homogeneous hypersurfaces} ⊂ {isoparametric hypersurfaces} follows immedi-
ately from Fact 1.

Fact 2. (É. Cartan, ‘37)

• When M = En or Hn, the equality holds.

• In Sn, there exists homogeneous examples more than hyperspheres and prod-
uct of spheres.

Fact 3. (Ozeki-Takeuchi, ‘76) There exist infinitely many non-homogeneous
isoparametric hypersurfaces in Sn.

In the following, we restrict our argument to M = Sn.

Remark 1.4. Homogeneous hypersurfaces in Sn are given by isotropy orbits of

rank two symmetric spaces, and classified completely (Hsiang-Lawson, ‘71). Homo-

geneous hypersurfaces are characterized as a completely integrable system (Ferapon-

tov, ‘95).

Fact 4. (Münzner, ‘81) An isoparametric hypersurface Mt in Sn satisfies the
following :

(a) g = ]{distinct principal curvatures} ∈ {1, 2, 3, 4, 6}.
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(b) The multiplicities m1,m2, . . . ,mg of the principal curvatures λ1 > λ2 > · · · >
λg satisfy mi = mi+2.

(c) There exists a degree g homogeneous polynomial F : En+1 → R called the
Cartan-Münzner polynomial satisfying :

(i) ‖DF (x)‖2 = g2‖x‖2g−2

(ii) 4F (x) =
m2 −m1

2
g2‖x‖g−2.

Then f = F |Sn : Sn → [−1, 1] is an isoparametric function on Sn. The level set
Mt = F−1(t) ∩ Sn for t ∈ (−1, 1) is an isoparametric hypersurface.

Definition 1.5. We call M± = f−1(±1) the focal submanifold.

Classification of isoparametric hypersurfaces in Sn

g 1 2 3 4 (partial) 6

M Sn−1

hom.
Sk × Sn−k−1

hom.
CF

hom.
hom. or
OT-FKM type

N6,M12

hom.

The case g = 3: Cartan hypersurface C3d
F

Fact 5. (Cartan ‘38) Isoparametic hypersrufaces C3d
F with g = 3 are given by tubes

over P 2F which are standardly embedded in S4, S7, S13, S25. Here, F = R,C,H,C
(Cayley number). (d = 1, 2, 4, 8 = m = mi).

The case g = 6:

Fact 6. (Abresch, ‘83) When g = 6 we have mi = m ∈ {1, 2}.
For each m, we have a homogeneous example:

m = 1: Isotropy orbits of G2/SO(4) in S7.

m = 2: Isotropy orbits of G2 ×G2/G2 in S13.

These hypersurfaces are closely related to Cartan hypersurfaces CF as follows:

Proposition 1. (M. ‘93) The homogeneous hypersurface N6 with (g,m) = (6, 1)
has a fibration π : N6 → S3 with fiber CR (in fact, N6 ∼= S3 × CR holds).

Proposition 2. (M. ‘11) The homogeneous hypersurface M12 with (g,m) = (6, 2)
has a fibration π : M → S6 with fiber CC.

m = 1 m = 2

N6 ∼= SO(4)/Z2 ⊕ Z2 M12 ∼= G2/T
2y ← CR ∼= SO(3)/Z2 ⊕ Z2

y ← CC ∼= SU(3)/T 2

S3 ∼= SO(4)/SO(3) S6 ∼= G2/SU(3)
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Remark 1.6. The focal submanifolds M± with (g,m) = (6, 2) are related to

Bryant’s twistor fibration:

(i) M+
∼= Q5 → S6 = G2/SU(3) is diffeomorphic to the twistor fibration on S6

with fiber CP 2.

(ii) M− ∼= Q5 → G2/SO(4) is diffeomorphic to the twistor fibration on G2/SO(4)

with fiber CP 1.

• Thus M+ and M− are not congruent.

Yau’s problem: Classify isoparametric hypersurfaces in Sn(1992).

Fact 7. (Dorfmeister-Neher, ‘85, M. ‘09) Isoparametric hypersurfaces with
(g,m) = (6, 1) are given by isotropy orbits of G2/SO(4).

Theorem 1. (M. to appear in Ann. of Math.) Isoparametric
hypersurfaces with (g,m) = (6, 2) are homogeneous, i.e., isotopy
orbits of G2 ×G2/G2.

Key Proposition 3. (M. ‘93, ‘11) An isoparametric hypersurface with g = 6 is
homogeneous ⇔ Condition A; The kernel of the shape operator of a focal
submanifold is independent of the normal direction.

(When m = 2, to show Condition A is extremely difficult.)

The case g = 4:

Fact 8. (Cecil-Chi-Jensen, Immervoll, Chi, ‘07∼‘12) Isoparametric hypersurfaces
with g = 4 are exhausted by the following table, except for (m1,m2) = (7, 8).

isoparametric hypersurfaces with g = 4 in Sn.

non-homogeneous (m1,m2) = (3, 4k), (7, 8k), . . .
G/K : non-Hermitian

OT-FKM type (4, 4k − 1)
hom.: *Hermitian

isotropy orbits (1, k), (2, 2k − 1), (9, 6)
not OT-FKM type of G/K *Hermitian (4, 5)

non-Hermitian (2, 2)
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2 Clifford systems and OT-FKM type

Let O(n) be a orthogonal group, o(n) be its Lie algebra.

Definition 2.1. P0, . . . Pm ∈ O(2l) is a Clifford system

⇔ PiPj + PjPi = 2δij id, 0 ≤ i, j ≤ m.

Remark 2.2. (1) Possible pairs (m, l): (Atiyah-Bott-Shapiro, ‘64)

m 1 2 3 4 5 6 7 8 · · · m+ 8 · · ·

l = δ(m) 1 2 4 4 8 8 8 8 · · · 16δ(m) · · ·

(2) With respect to the inner product

〈P,Q〉 =
1

2l
Tr(P tQ),

P0, . . . , Pm is an orthonormal basis of the space V spanned by themselves.

(3) Clifford system corresponds to an expression of Clifford algebra in a one-to-one

way.

(4) Each Pi is a symmetric orthogonal matrix.

(5) PiPj are skew-symmetric.

Fact 9. (Ferus-Karcher-Münzner ‘81) For a Clifford system P0, . . . , Pm,

F (x) = 〈x, x〉2 − 2

m∑
i=0

〈Pix, x〉2

is a degree four Cartan-Münzner polynomial. When l −m − 1 > 0, a level set of
a regular value of F |S2l−1 is an isoparametric hypersurface in S2l−1 with g = 4,
m1 = m, m2 = l −m− 1.

By (5), PiPj , 0 ≤ i < j ≤ m are skew-symmetric, and generate a Lie subalgebra
isomorphic to o(m+ 1) in o(2l).

Fact 10. (FKM, ‘81, p.496) Spin(m+ 1) acts on R2l, and preserves F (x),
namely, F (x) is constant on each Spin(m+ 1) orbit.

Remark 2.3. Spin(m + 1) action is small in general, and not transitive on a

hypersurface.

Goal: Express F (x) via the moment map of the spin action.
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3 Symplectic geometry and the main results

Definition 3.1. (1) (P 2n, ω) is a symplectic manifold⇔ ω is a non-degenerate

closed 2-form on P .

(2) For f ∈ C∞(P ), the Hamiltonian vector field Hf ⇔ df = ω(Hf , ).

Put Ham(P ) = {Hf | f ∈ C∞(P )}. Let K be a Lie group acting on P , and k be its
Lie algebra.

Definition 3.2. (1) Fundamental vector field on P ⇔ vector field given by

Xζ =
d

dt

∣∣∣
t=0

(exp tζ)x for ζ ∈ k.

(2) K y P is a symplectic action ⇔ for k ∈ K holds k∗ω = ω.

(3) K y P is a Hamiltonian action ⇔ for ζ ∈ k, Xζ ∈ Ham(P ), namely, there

exists µζ ∈ C∞(P ) satisfying dµζ = ω(Xζ , ).

(4) With respect to the coadjoint action of K on k∗, µ : P → k∗ is the

moment map

⇔
(i) µ is K equivariant

(ii) dµ(ζ) = ω(Xζ , )

Therefore, K y P is a Hamiltonian action ⇔ there exists moment map µ :

P → k∗.

In fact, if the moment map µ : P → k∗ exists, for ζ ∈ k, µζ(p) = µ(p)(ζ) ∈
C∞(P ) and so Hµζ = Xζ . The converse is easy.

Example 2. (1) (Cn, J, ω) is a symplectic manifold with ω(X, ) = −〈JX, 〉.

When K y Cn is a Hamiltonian aciton, the moment map is give by µ(z)(ζ) =

−1

2
〈JXζ , z〉. In fact, we can show dµ(Yz)(ζ) = −〈JXζ , Y 〉 from Jζz = ζJz.

On the other hand, we have ω(Xζ , Y ) = −〈JXζ , Y 〉.

(2) Let G/K be a Hermitian symmetric space, and let g = k ⊕ p be the Cartan

decomposition. By an element z of the non-trivial center c of k, the Kähler

structure J on p is given by

Jx = adz(x) = −adx(z), z ∈ c, x ∈ p.
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Then the isotropy action K y p is Hamiltonian, and the moment map is

given by

µH(x) =
1

2
(adx)2z

(Ohnita, ‘05).

Remark 3.3. There does not necessarily exist symplectic structures on a general

symmetric space.

Symplectic structure on TRn

Because of TRn ∼= Cn, the symplectic structure is induced from Cn.

Hamiltonian action on TRn

When K ⊂ O(n) acts on Rn, we extend it naturally to an action K y TRn.
For ζ ∈ o(n), we have Xζ = (ζx, ζY ), (x, Y ) ∈ TRn.

Proposition 4. K y TRn is a Hamiltonian action, and the moment map µ :
TRn → k∗ is given by :

µ(x, Y )(ζ) = −〈ζx, Y 〉.

Example 3. When n = 3, let ζ1, ζ2, ζ3 ∈ o(3) be an orthonormal frame, then for

(x, Y ) ∈ TR3, µ(x, Y )(ζi) = −〈ζix, Y 〉 is the well-known angle momentum. In

particular, the moment map is given by

µ(x, Y ) = −
3∑
i=1

〈ζix, Y 〉ζi.

Spin(m+ 1) action on TR2l

Let P0, . . . , , Pm be a Clifford system on R2l. Then ζij = PiPj ∈ o(2l), 0 ≤ i < j ≤
m act on R2l and generate o(m + 1). Apply above argument to the Spin(m + 1)
action (exp tPiPj)x on R2l. Since ζij = PiPj is an orthonormal basis of o(m + 1),
we obtain:

Proposition 5. (M.) The moment map of the Spin(m + 1) action on TR2l is
given by

µ(x, Y ) = −
∑

0≤i<j≤m

〈ζijx, Y 〉ζij ∈ o(m+ 1) ∼= o∗(m+ 1).
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In particular, we have ‖µ(x, Y )‖2 =
∑

0≤i<j≤m〈PiPjx, Y 〉2.

The action U(1) y TR2l associated to the complex structure J commutes with
J , and so a symplectic and Hamiltonian action.

Theorem 2. (M, to appear in Math. Ann.)
Let P0, . . . , Pm on R2l be a Clifford system, and define a vector
field Y : R2l → TR2l: (not necessarily continuous ) by

Yx =


P0x, if 〈P0x, x〉 = 0
〈P1x, x〉P0x− 〈P0x, x〉P1x√
〈P1x, x〉2 + 〈P0x, x〉2

, if 〈P0x, x〉 6= 0.

Let µ0 + µ be the moment map of the action

U(1)× Spin(m+ 1) y TR2l.

Then the Cartan-Münzner polynomial is expressed as
F (x) = ‖µ0(x, Yx)‖2 − 2‖µ(x, Yx)‖2.

Remark 3.4. (1) The right hand side of F (x) is determined by x ∈ R2l.

(2) We can replace P0, P1 by arbitrary orthogonal two unit elements in V .

(3) C = {(x, Yx) ∈ TR2l} is a 2l dimensional submanifold of TR2l outside {x |

〈P0x, x〉 = 0}, but is not Lagrangian.

(4) For isotropy orbits of a Hermitian symmetric space, an expression via the mo-

ment map was first given by S. Fujii (2011), and Fujii-H. Tamaru.

Remaining case

There are two non-OT-FKM type isoparametric hypersurfaces.

A brief review of homogeneous hypersurfaces

Fact 11.(Hsiang-Lawson,‘71) Homogeneous hypersurfaces in Sn are given by
isotropy orbits of rank two symmetric spaces.

Let G/K be a rank two symmetric space, and let g = k + p be the Cartan
decomposition. Extend the action K y p naturally to Tp :

k · (x, Y ) = (Adk(x),Adk(Y )), (x, Y ) ∈ Tp, k ∈ K.

Since p ∼= Rn, we can apply above argument.
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Proposition 6. (M.) Let G/K be a rank two symmetric space, then U(1)×K y

Tp is a Hamiltonian action with moment map µ0 + µ : Tp→ u(1)∗ ⊕ k∗ given by

µ0(x, Y ) =
1

2
(‖x‖2 + ‖Y ‖2)η,

µ(x, Y ) = −adx(Y ), (x, Y ) ∈ Tp.

Corollary 3.5. When G/K is Hermitian symmetric space, then for z ∈ c ⊂ k such

that J = adz?Cwe have

µ(x,
1

2
Jx) = µH(x) =

1

2
(adx)2z.

Remark 3.6. Proposition 6 holds not only for g = 4 but also for all the homo-

geneous cases.

In our case, G/K = SO(5) × SO(5)/SO(5) ((m1,m2) = (2, 2)), and
SO(10)/U(5) ((m1,m2) = (4, 5)) occur. Let Eij be the 5 × 5 matrix with 1 in
the (i, j) component, and all others 0, and put Gij = Eij − Eji ∈ o(5) ⊂ u(5),
1 ≤ i < j ≤ 5.

Theorem 3. (M. to appear in Math. Ann.) For non-OT-FKM
type isoparametric hypersurfaces with (m1,m2) = (2, 2), (4, 5), using
τ = G25 +G45 ∈ k, and an element H of the maximal abelian subalge-
bra a of p, put YH = [H, τ ] ∈ p, and extend it to a vector field Yx via
the action of K. Restricting the moment map µ0 + µ of the U(1)×K
action to C = {(x, Yx) = Adk(H,YH)} ⊂ Tp, we obtain

F (x) = p‖µ0(x, Yx)‖2 − q‖µ(x, Yx)‖2

Here, when (m1,m2) = (2, 2), we have (p, q) = (3, 4), and when

(m1,m2) = (4, 5), we have (p, q) = (
3

4
, 1).

Conclusion.
The Cartan-Münzner polynomial of g = 4 can be expressed by the square norm

of the moment map of certain group action on TR2l restricted to a hal dimensional
submanifold. It is done in both homogenous and non-homogeneous cases in
a unified way.
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Other recent results and future problems.
Fact 12. (Tang-Yan, 2012) Yau’s conjecture on the first eigenvalue of a minimal
hypersurface in Sn is affirmative for all the minimal isoparametric hypersurfaces.

As for transnormal functions which are weakened from isoparametric function,
we obtain :

Theorem 4. (M. to appear in DGA) We call f a transnormal
function if it satisfies only the condition (I) of isoparametric function.
Then it follows:

(1) A complete Riemannian manifold with transnormal function is
either diffeomorphic to a vector bundle or a union of two disk bundles.

(2) A singular level set of a transnormal function is austere, and so
minimal.

This fact implies that the condition (I) is rather essential.

Remark 3.7. (1) Since TRn ∼= Cn, if we complexify the Cartan-Münzner polyno-

mial as a homogeneous complex polynomial, what are complex level sets of F (z)

which are hypersurfaces in Cn+1 or in CPn ?

When g = 3, it is called the Severi variety. What follows when g = 4, 6?

(2) Z.Z. Tang is studying isoparametric hypersurfaces from various points of view in

geometry. For instance, Chern’s conjecture, Yau’s conjecture, Gromov-Lawson-

Schoen-Yau theory on manifold with positive scalar curvature, exotic spheres,

and Willmore submanifolds etc. See ArXiv.
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